If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+13m-12=0
a = 4; b = 13; c = -12;
Δ = b2-4ac
Δ = 132-4·4·(-12)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-19}{2*4}=\frac{-32}{8} =-4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+19}{2*4}=\frac{6}{8} =3/4 $
| -64x^2+4050-5200=0 | | 2^-2x=0 | | 0.0001x^2+0.06x-1.5=0 | | y^2-21y+20=0 | | y2–21y+20=0 | | 4.9x^2+5x-650=0 | | y^2–21y+20=0 | | 3g^2+16g-12=0 | | -0.0001x^2+0.06x-1.5=0 | | 7j-4(2j-4)=9 | | 50s^2+23s-1=0 | | 4s^2+20-11=0 | | 1.5x+x=495 | | y=225-16^2 | | 2/3=n/27 | | 4p+6=-2 | | x*20-100=100 | | 2/3w+53=59 | | y=-5(-7)+1 | | 8x=8.58-5x | | 5d+1=6d-1 | | 3•6^(4x-1)=18 | | x^2-141x+4898=0 | | 60+14x=448+12x | | 2x+6x+8=4x(x-2 | | -w-5/4=1/4w-7/3 | | 1/2(x+8)-x=2x+8 | | 2x8=32 | | 4(10)^(3x)=12 | | 6x+32=3x6 | | 24x24=x | | (4x-5)/(2x-1)=0 |